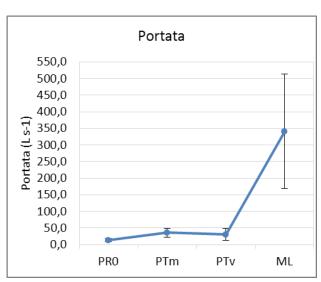


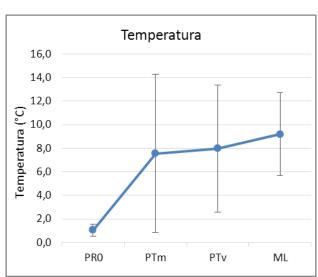
 WP3 - Effetti eco-genotossici sulla comunità dei macroinvertebrati

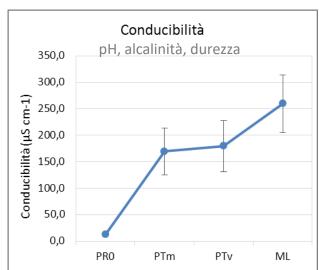
Gli invertebrati acquatici: struttura della comunità e sensibilità ai contaminanti emergenti

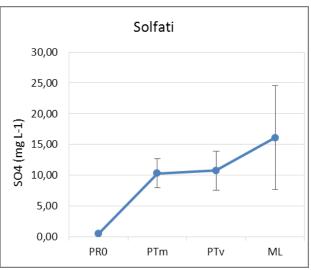
Valeria Lencioni

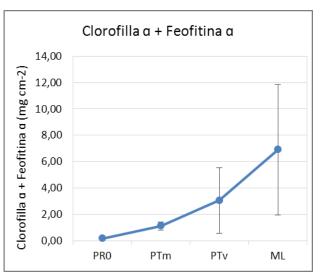
• Studio della struttura e delle caratteristiche funzionali della comunità di macroinvertebrati, studio delle relazioni tra specie e variabili ambientali

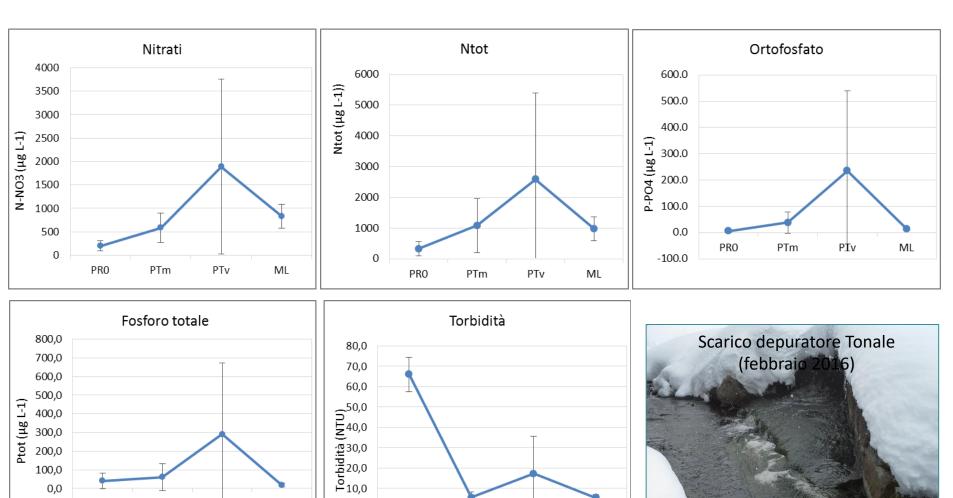

	Campionamento quantitativo della fauna; dati ambientali, analisi chimiche
PR0	13/7/2016; 17/9/2016
PTm	22/2/2016; 28/6/2016
PTv	22/2/2016; 28/6/2016
ML	23/2/2016; 29/6/2016




- in PTm, PTv e ML: N.5 repliche con retino tipo Surber (32x32 cm, 250 μm, area di 0.1 m²) per 2 minuti/replica (area complessiva campionata= 0.5 m²);
- in PRO: N.5 repliche con retino tipo Surber (22x23 cm, area di 0.05 m²) per 2 minuti/replica
- un campione integrativo di drift (1h) per la raccolta di esuvie pupali di insetti


I replicati sono stati raccolti secondo il protocollo STAR-ICMi (Buffagni & Erba, 2007) in microhabitat rappresentativi del tratto di torrente investigato in accordo con il manuale ISPRA (2013)


Andamento longitudinale delle principali variabili ambientali



(valori medi tra estate e inverno per stazione)

Al diminuire della quota aumentano progressivamente, con valori medi simili a monte e a valle del depuratore Tonale tranne la produzione primaria più elevata a valle

Andamento longitudinale delle principali variabili ambientali

Parametri con valori massimi in PTv rispetto a tutti i siti di indagine, con valori massimi in inverno attribuibili allo scarico del depuratore (forte stagionalità)

PTm

PTv

ML

Ptot (µg L-1)

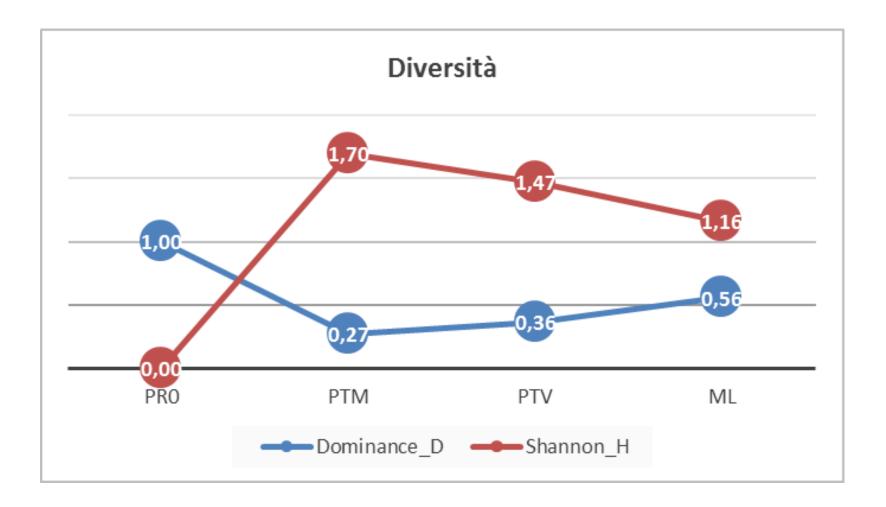
400,0 300,0 200,0 100,0 0,0

-100,0

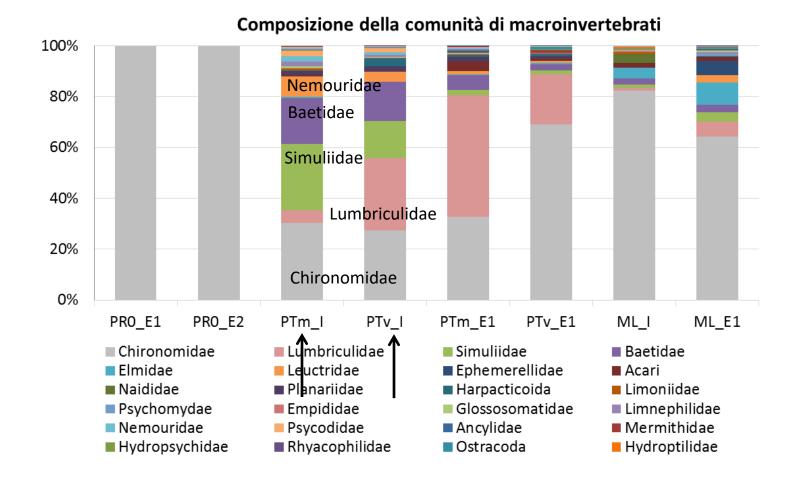
-200,0

PR0

PTm


P‡v

ML


0,0

-10,0

PR0

- massima diversità calcolata in PTm (H= $1,70 \pm 0.32$; D= $0,27 \pm 0,10$)
- diversità nulla e dominanza assoluta nella comunità in PRO, come atteso in un sito con caratteristiche tipiche di un ambiente criale

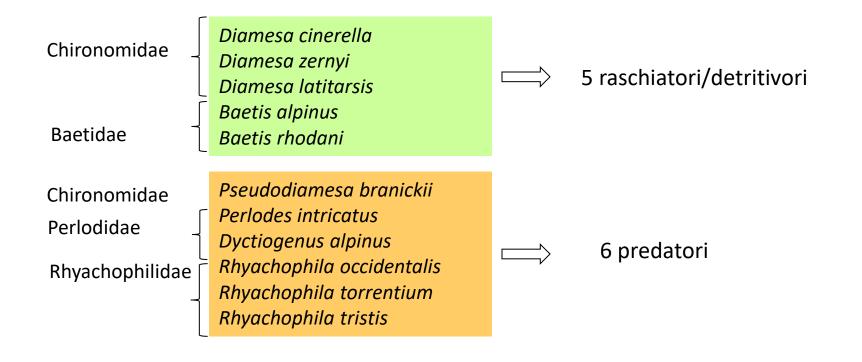
- Taxa assenti in PTv in inverno, presenti in PTm: Taeniopterygidae, Hydropsychidae, Elmidae, Hydraenidae, Athericidae, Acari
- ➤ In tutti i siti di indagine i Chironomidae sono risultati il taxon dominante (eccetto in PTm e in PTv_I), rappresentante in PRO il 100% della comunità a inizio e fine estate e 82% in ML in inverno

Qualità e Stato Ecologico

			STAR_ICMi			IBE	
CORSO D'ACQUA	Data	SITO	Valore	Stato Ecologico	Classe	Valore	Classe
Noce	22/02/2016	ML	0,766	BUONO	2	12-13	I
Noce	28/06/2016	ML	0,739	BUONO	2	11	
Vermigliana	23/02/2016	PTm	1,191	ELEVATO	1	11-10	
Vermigliana	29/06/2016	PTm	1,105	ELEVATO	1	11	
Vermigliana	23/02/2016	PΤv	1,039	ELEVATO	1	10	1
Vermigliana	29/06/2016	PTv	1,015	ELEVATO	1	11	
Presena	13/07/2016	PR0	0,013	CATTIVO	5	1	V
Presena	17/09/2015	PR0	0,013	CATTIVO	5	1	V

Stato Ecologico	ELEVATO	BUONO	SUFFICIENTE	SCARSO	CATTIVO
Intervallo Indice	> 0,95	0,95-0,71	0,71-0,48	0,48-0,24	< 0,24
Classe	1	2	3	4	5

Classe IBE	1	II	Ш	IV	٧
Valori IBE	10-11-12	8-9	6-7	4-5	0-1-2-3


- PRO: sito caratterizzato da una naturale bassa biodiversità, ad una quota oltre il limite di applicabilità di entrambi gli indici
- Indice STAR_ICMi in grado di individuare un lieve peggioramento nella qualità ecologica del corso d'acqua (classe 2), non individuata dall'I.B.E. in ML (Noce)
- Nessuno dei due evidenza differenze tra PTm e PTv

Valutazione degli effetti di CE sugli invertebrati: Tossicità acuta e Genotossicità

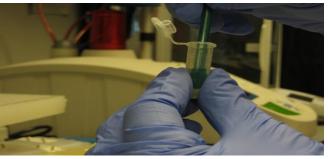
11 specie di insetti target

I criteri utilizzati per la selezione delle specie sono:

- > abbondanza relativa nella comunità di macroinvertebrati
- > ruolo trofico
- > facilità di determinazione ad occhio nudo (sul campo) o allo stereomicroscopio

Specie	Totali specie tossicità acuta Inverno	Totali specie tossicità acuta Estate	Totali specie tossicità acuta	Totali specie genotossicità Inverno	Totali specie genotossicità Estate	Totali specie genotossicità
Baetis alpinus	21	16	37	29	43	72
Baetis rhodani	11	4	15	7	17	24
Diamesa cinerella	27	1	28	43	1	44
Diamesa latitarsis gr.	0	3	3	0	5	5
Diamesa zernyi gr.	0	17	17	0	40	40
Dictyogenus alpinus	2	0	2	0	0	0
Perlodus intricatus	2	0	2	3	0	3
Pseudodiamesa branickii	24	2	26	20	2	22
(Hyper)Rhyacophila occidentalis	13	8	21	18	23	41
(Hyper)Rhyacophila torrentium	1	0	1	3	0	3
(Hypo)Rhyacophila tristis	0	5	5	2	9	11
Totali stazioni per stagione	101	56	157	125	140	265
Totali stazioni	157		157	26	200	

24 uscite in inverno e 9 uscite in estate


Test di Tossicità acuta (24-96 h): LC10, LC50, LC100

- 157 test, 4 siti: TPm, TPv, ML in inverno, PR0 in estate
- Raccolta, trasporto in frigo, acclimatazione per 24 h in HRW, con aeratore, al buio
- In base alla disponibilità, sono state utilizzate da 1 a 3 repliche contenenti da 1 a 5 larve ciascuna per ogni conc. di esposizione
- La durata dei test era compresa tra 24h e 96h in base alla mortalità, valutata ogni 24h, con rinnovo della soluzione
- Gli animali sono stati classificati come vivi (mobilità piena), sofferenti (movimento osservato dopo stimolo tattile) e morti
- Per i chironomidi è stata registrata anche la pupazione

Test di genotossicità

- 265 test, 4 siti: TPm, TPv, ML in inverno, PRO in estate
- Animali raccolti ed esposti alle molecole scelte come nei test di tossicità acuta
- Animali esposti a conc. subletali (e rispettivo tempo di esposizione, tra 24 e 96h):
 - LC10
 - NOEC o LOEC o LCx calcolata (x<33, 96 h)
- Analizzati solo animali vivi al termine dell'esposizione

Tossicità acuta (IBU, FUR, TMP, TCC) – Specie

D. cinerella

D. zernyi

Molto resistenti (nessuna LC stimata)

Rhyachophila spp., PRE

Perlodidae

Molto resistenti (solo 1 LC stimata, IBU TPm_24h)

P. branickii

PRE (L4)

Resistenza intermedia (3 LC stimate su 8: IBU_TPm_24h; FUR TPm e v, 72h)

B. alpinus

B. rhodani

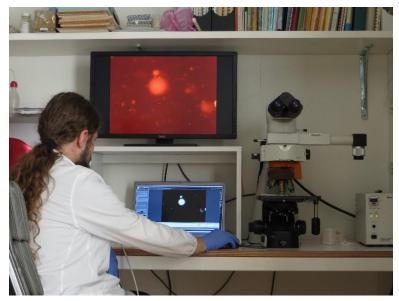
RAS-DET

Specie più sensibili (LC stimate per le 4 molecole testate, a 24, 48 o 72h)

Genotossicità - Sintesi

D. cinerella	D. zernyi	B. alpinus	B. rhodani	P. branickii	Rhyacophila spp.
PRO	BOS° TCC° UBU° SUC° FUR° TMP° TON° MET°				
TP_up FURi [BU] TCCi TMPi		IBU FURI TCCI		TMP ⁱ TCC ⁱ (BU)	IBU ⁱ FUR ⁱ
TP_dw TMPi TCCi		TMPi		IBU ⁱ TCC ⁱ TMP ⁱ	IBU ^e FUR ^e SUC ^(e)
ML		(BU ^{i,e}	(IBU ⁱ) (FUR ^{i,e})		■ LC stimata e:estate ■ LC calcolata i: inverno

Ringraziamenti


Alessandra Franceschini

Francesco Bellamoli

Francesca Paoli

Francesco Miari

Alberto Scotti

Ringraziamenti

Hanno collaborato:

- Università di Trento [concentrazioni ambientali dei CE per la scelta delle molecole a inizio progetto]
- MeteoTrentino PAT [temperatura dell'acqua e portata]
- Fondazione E. Mach [Analisi chimiche inverno 2016]
- Agenzia Provinciale per la Protezione dell'Ambiente [Analisi chimiche estate 2016]
- ENEA Roma [protocollo Comet Assay]
- Universidad Nacional de Educación a Distancia (UNED), Madrid [protocollo Comet Assay]
- Il partenariato